Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Radiology ; 310(3): e231220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470236

RESUMO

Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias Hepáticas , Humanos , Abdome , Cirrose Hepática/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem
2.
Front Oncol ; 14: 1355454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482208

RESUMO

Background and aims: With the rapid growth of artificial intelligence (AI) applications in various fields, understanding its impact on liver cancer research is paramount. This scientometrics project aims to investigate publication trends and topics in AI-related publications in liver cancer. Materials and Methods: We employed a search strategy to identify AI-related publications in liver cancer using Scopus database. We analyzed the number of publications, author affiliations, and journals that publish AI-related publications in liver cancer. Finally, the publications were grouped based on intended application. Results: We identified 3950 eligible publications (2695 articles, 366 reviews, and 889 other document types) from 1968 to August 3, 2023. There was a 12.7-fold increase in AI-related publications from 2013 to 2022. By comparison, the number of total publications on liver cancer increased by 1.7-fold. Our analysis revealed a significant shift in trends of AI-related publications on liver cancer in 2019. We also found a statistically significant consistent increase in numbers of AI-related publications over time (tau = 0.756, p < 0.0001). Eight (53%) of the top 15 journals with the most publications were radiology journals. The largest number of publications were from China (n=1156), the US (n=719), and Germany (n=236). The three most common publication categories were "medical image analysis for diagnosis" (37%), "diagnostic or prognostic biomarkers modeling & bioinformatics" (19%), and "genomic or molecular analysis" (18%). Conclusion: Our study reveals increasing interest in AI for liver cancer research, evidenced by a 12.7-fold growth in related publications over the past decade. A common application of AI is in medical imaging analysis for various purposes. China, the US, and Germany are leading contributors.

3.
Gut ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418210

RESUMO

BACKGROUND: Dynamic changes in non-invasive tests, such as changes in alanine aminotransferase (ALT) and MRI proton-density-fat-fraction (MRI-PDFF), may help to detect metabolic dysfunction-associated steatohepatitis (MASH) resolution, but a combination of non-invasive tests may be more accurate than either alone. We developed a novel non-invasive score, the MASH Resolution Index, to detect the histological resolution of MASH. METHODS: This study included a derivation cohort of 95 well-characterised adult participants (67% female) with biopsy-confirmed MASH who underwent contemporaneous laboratory testing, MRI-PDFF and liver biopsy at two time points. The primary objective was to develop a non-invasive score to detect MASH resolution with no worsening of fibrosis. The most predictive logistic regression model was selected based on the highest area under the receiver operating curve (AUC), and the lowest Akaike information criterion and Bayesian information criterion. The model was then externally validated in a distinct cohort of 163 participants with MASH from a clinical trial. RESULTS: The median (IQR) age and body mass index were 55 (45-62) years and 32.0 (30-37) kg/m2, respectively, in the derivation cohort. The most accurate model (MASH Resolution Index) included MRI-PDFF, ALT and aspartate aminotransferase. The index had an AUC of 0.81 (95% CI 0.69 to 0.93) for detecting MASH resolution in the derivation cohort. The score calibrated well and performed robustly in a distinct external validation cohort (AUC 0.83, 95% CI 0.76 to 0.91), and outperformed changes in ALT and MRI-PDFF. CONCLUSION: The MASH Resolution Index may be a useful score to non-invasively identify MASH resolution.

4.
Radiology ; 310(2): e231501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376399

RESUMO

Background The independent contribution of each Liver Imaging Reporting and Data System (LI-RADS) CT or MRI ancillary feature (AF) has not been established. Purpose To evaluate the association of LI-RADS AFs with hepatocellular carcinoma (HCC) and malignancy while adjusting for LI-RADS major features through an individual participant data (IPD) meta-analysis. Materials and Methods Medline, Embase, Cochrane Central Register of Controlled Trials, and Scopus were searched from January 2014 to January 2022 for studies evaluating the diagnostic accuracy of CT and MRI for HCC using LI-RADS version 2014, 2017, or 2018. Using a one-step approach, IPD across studies were pooled. Adjusted odds ratios (ORs) and 95% CIs were derived from multivariable logistic regression models of each AF combined with major features except threshold growth (excluded because of infrequent reporting). Liver observation clustering was addressed at the study and participant levels through random intercepts. Risk of bias was assessed using a composite reference standard and Quality Assessment of Diagnostic Accuracy Studies 2. Results Twenty studies comprising 3091 observations (2456 adult participants; mean age, 59 years ± 11 [SD]; 1849 [75.3%] men) were included. In total, 89% (eight of nine) of AFs favoring malignancy were associated with malignancy and/or HCC, 80% (four of five) of AFs favoring HCC were associated with HCC, and 57% (four of seven) of AFs favoring benignity were negatively associated with HCC and/or malignancy. Nonenhancing capsule (OR = 3.50 [95% CI: 1.53, 8.01]) had the strongest association with HCC. Diffusion restriction (OR = 14.45 [95% CI: 9.82, 21.27]) and mild-moderate T2 hyperintensity (OR = 10.18 [95% CI: 7.17, 14.44]) had the strongest association with malignancy. The strongest negative associations with HCC were parallels blood pool enhancement (OR = 0.07 [95% CI: 0.01, 0.49]) and marked T2 hyperintensity (OR = 0.18 [95% CI: 0.07, 0.45]). Seventeen studies (85%) had a high risk of bias. Conclusion Most LI-RADS AFs were independently associated with HCC, malignancy, or benignity as intended when adjusting for major features. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Crivellaro in this issue.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Cintilografia , Imageamento por Ressonância Magnética
5.
Eur Radiol ; 34(3): 1502-1514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37656177

RESUMO

OBJECTIVE: We performed an updated meta-analysis to determine the diagnostic performance of Liver Imaging Reporting and Data System (LI-RADS, LR) 5 category for hepatocellular carcinoma (HCC) using LI-RADS version 2018 (v2018), and to evaluate differences by imaging modalities and type of MRI contrast material. METHODS: The MEDLINE and Embase databases were searched for studies reporting the performance of LR-5 using v2018 for diagnosing HCC. A bivariate random-effects model was used to calculate the pooled per-observation sensitivity and specificity. Subgroup analysis was performed based on imaging modalities and type of MRI contrast material. RESULTS: Forty-eight studies qualified for the meta-analysis, comprising 9031 patients, 10,547 observations, and 7216 HCCs. The pooled per-observation sensitivity and specificity of LR-5 for diagnosing HCC were 66% (95% CI, 61-70%) and 91% (95% CI, 89-93%), respectively. In the subgroup analysis, MRI with extracellular agent (ECA-MRI) showed significantly higher pooled sensitivity (77% [95% CI, 70-82%]) than CT (66% [95% CI, 58-73%]; p = 0.023) or MRI with gadoxetate (Gx-MRI) (65% [95% CI, 60-70%]; p = 0.001), but there was no significant difference between ECA-MRI and MRI with gadobenate (gadobenate-MRI) (73% [95% CI, 61-82%]; p = 0.495). Pooled specificities were 88% (95% CI, 80-93%) for CT, 92% (95% CI, 86-95%) for ECA-MRI, 93% (95% CI, 91-95%) for Gx-MRI, and 91% (95% CI, 84-95%) for gadobenate-MRI without significant differences (p = 0.084-0.803). CONCLUSIONS: LI-RADS v2018 LR-5 provides high specificity for HCC diagnosis regardless of modality or contrast material, while ECA-MRI showed higher sensitivity than CT or Gx-MRI. CLINICAL RELEVANCE STATEMENT: Refinement of the criteria for improving sensitivity while maintaining high specificity of LR-5 for HCC diagnosis may be an essential future direction. KEY POINTS: • The pooled per-observation sensitivity and specificity of LR-5 for diagnosing HCC using LI-RADSv2018 were 66% and 91%, respectively. • ECA-MRI showed higher sensitivity than CT (77% vs 66%, p = 0.023) or Gx-MRI (77% vs 65%, p = 0.001). • LI-RADS v2018 LR-5 provides high specificity (88-93%) for HCC diagnosis regardless of modality or contrast material type.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos Organometálicos , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Meios de Contraste/farmacologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Meglumina , Quelantes
6.
JHEP Rep ; 6(1): 100928, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38089550

RESUMO

Background & Aims: Pathologists quantify liver steatosis as the fraction of lipid droplet-containing hepatocytes out of all hepatocytes, whereas the magnetic resonance-determined proton density fat fraction (PDFF) reflects the tissue triacylglycerol concentration. We investigated the linearity, agreement, and correspondence thresholds between histological steatosis and PDFF across the full clinical spectrum of liver fat content associated with non-alcoholic fatty liver disease. Methods: Using individual patient-level measurements, we conducted a systematic review and meta-analysis of studies comparing histological steatosis with PDFF determined by magnetic resonance spectroscopy or imaging in adults with suspected non-alcoholic fatty liver disease. Linearity was assessed by meta-analysis of correlation coefficients and by linear mixed modelling of pooled data, agreement by Bland-Altman analysis, and thresholds by receiver operating characteristic analysis. To explain observed differences between the methods, we used RNA-seq to determine the fraction of hepatocytes in human liver biopsies. Results: Eligible studies numbered 9 (N = 597). The relationship between PDFF and histology was predominantly linear (r = 0.85 [95% CI, 0.80-0.89]), and their values approximately coincided at 5% steatosis. Above 5% and towards higher levels of steatosis, absolute values of the methods diverged markedly, with histology exceeding PDFF by up to 3.4-fold. On average, 100% histological steatosis corresponded to a PDFF of 33.0% (29.5-36.7%). Targeting at a specificity of 90%, optimal PDFF thresholds to predict histological steatosis grades were ≥5.75% for ≥S1, ≥15.50% for ≥S2, and ≥21.35% for S3. Hepatocytes comprised 58 ± 5% of liver cells, which may partly explain the lower values of PDFF vs. histology. Conclusions: Histological steatosis and PDFF have non-perfect linearity and fundamentally different scales of measurement. Liver fat values obtained using these methods may be rendered comparable by conversion equations or threshold values. Impact and implications: Magnetic resonance-proton density fat fraction (PDFF) is increasingly being used to measure liver fat in place of the invasive liver biopsy. Understanding the relationship between PDFF and histological steatosis fraction is important for preventing misjudgement of clinical status or treatment effects in patient care. Our analysis revealed that histological steatosis fraction is often significantly higher than PDFF, and their association varies across the spectrum of fatty liver severity. These findings are particularly important for physicians and clinical researchers, who may use these data to interpret PDFF measurements in the context of histologically evaluated liver fat content.

7.
Am J Gastroenterol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38146873

RESUMO

INTRODUCTION: Ultrasound (US) is associated with severe visualization limitations (US Liver Imaging Reporting and Data System visualization score C) in one-third of patients with nonalcoholic fatty liver disease (NAFLD) cirrhosis undergoing hepatocellular carcinoma (HCC) screening. Data suggest abbreviated MRI (aMRI) may improve HCC screening efficacy. This study analyzed the cost-effectiveness of HCC screening strategies, including an US visualization score-based approach with aMRI, in patients with NAFLD cirrhosis. METHODS: We constructed a Markov model simulating adults with compensated NAFLD cirrhosis in the United States undergoing HCC screening, comparing strategies of US plus visualization score, US alone, or no surveillance. We modeled aMRI in patients with visualization score C and negative US, while patients with scores A/B did US alone. We performed a sensitivity analysis comparing US plus visualization score with US plus alpha fetoprotein or no surveillance. The primary outcome was the incremental cost-effectiveness ratio (ICER), with a willingness-to-pay threshold of $100,000 per quality-adjusted life-year. Sensitivity analyses were performed for all variables. RESULTS: US plus visualization score was the most cost-effective strategy, with an ICER of $59,005 relative to no surveillance. The ICER for US alone to US plus visualization score was $822,500. On sensitivity analysis, screening using US plus visualization score remained preferred across several parameters. Even with alpha fetoprotein added to US, the US plus visualization score strategy remained cost-effective, with an ICER of $62,799 compared with no surveillance. DISCUSSION: HCC surveillance using US visualization score-based approach, using aMRI for visualization score C, seems to be the most cost-effective strategy in patients with NAFLD cirrhosis.

9.
Radiology ; 309(1): e231092, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815451

RESUMO

Background There is a need for reliable noninvasive methods for diagnosing and monitoring nonalcoholic fatty liver disease (NAFLD). Thus, the multidisciplinary Non-invasive Biomarkers of Metabolic Liver disease (NIMBLE) consortium was formed to identify and advance the regulatory qualification of NAFLD imaging biomarkers. Purpose To determine the different-day same-scanner repeatability coefficient of liver MRI biomarkers in patients with NAFLD at risk for steatohepatitis. Materials and Methods NIMBLE 1.2 is a prospective, observational, single-center short-term cross-sectional study (October 2021 to June 2022) in adults with NAFLD across a spectrum of low, intermediate, and high likelihood of advanced fibrosis as determined according to the fibrosis based on four factors (FIB-4) index. Participants underwent up to seven MRI examinations across two visits less than or equal to 7 days apart. Standardized imaging protocols were implemented with six MRI scanners from three vendors at both 1.5 T and 3 T, with central analysis of the data performed by an independent reading center (University of California, San Diego). Trained analysts, who were blinded to clinical data, measured the MRI proton density fat fraction (PDFF), liver stiffness at MR elastography (MRE), and visceral adipose tissue (VAT) for each participant. Point estimates and CIs were calculated using χ2 distribution and statistical modeling for pooled repeatability measures. Results A total of 17 participants (mean age, 58 years ± 8.5 [SD]; 10 female) were included, of which seven (41.2%), six (35.3%), and four (23.5%) participants had a low, intermediate, or high likelihood of advanced fibrosis, respectively. The different-day same-scanner mean measurements were 13%-14% for PDFF, 6.6 L for VAT, and 3.15 kPa for two-dimensional MRE stiffness. The different-day same-scanner repeatability coefficients were 0.22 L (95% CI: 0.17, 0.29) for VAT, 0.75 kPa (95% CI: 0.6, 0.99) for MRE stiffness, 1.19% (95% CI: 0.96, 1.61) for MRI PDFF using magnitude reconstruction, 1.56% (95% CI: 1.26, 2.07) for MRI PDFF using complex reconstruction, and 19.7% (95% CI: 15.8, 26.2) for three-dimensional MRE shear modulus. Conclusion This preliminary study suggests that thresholds of 1.2%-1.6%, 0.22 L, and 0.75 kPa for MRI PDFF, VAT, and MRE, respectively, should be used to discern measurement error from real change in patients with NAFLD. ClinicalTrials.gov registration no. NCT05081427 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kozaka and Matsui in this issue.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Biomarcadores , Estudos Transversais , Técnicas de Imagem por Elasticidade/métodos , Fibrose , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos
10.
Abdom Radiol (NY) ; 48(12): 3696-3702, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37725110

RESUMO

PURPOSE: To estimate the prevalence of Liver Imaging Reporting and Data System (LI-RADS, LR) v2018 categories reported on CT or MRI performed for hepatocellular carcinoma (HCC) screening. MATERIALS AND METHODS: This retrospective study included all reports for CT and MRI exams performed for HCC screening patients between 8/2018 and 4/2020. Patients with ultrasound, CT, or MRI of the abdomen within two years of the index exam were excluded. From each radiology report, we extracted number of reported liver observations, and LI-RADS v2018 category for each observation. RESULTS: There were 329 patients (170 [52%] male, mean age 59 years [SD 12]), of whom 177 (54%) had MRI with gadoxetate, 72 (22%) had MRI with extracellular contrast, 7 (2%) had MRI with unspecified contrast, and 73 (22%) had CT. Of 329 patients, 199 (60%) had no reported observations; 130 patients had 166 reported observations: 114 (68.7%) LR-1, 8 (4.8%) LR-2, 21 (12.6%) LR-3, 6 (3.6%) LR-4, 13 (7.8%) LR-5, 3 (1.8%) LR-M, and 1 (0.6%) LR-TIV. Of 114 LR-1 observations, 78 (68%) were cysts, 17 (15%) were hemangiomas, 12 (11%) were vascular shunts, 3 (3%) were focal nodular hyperplasia, 2 (2%) were siderotic nodules, 1 (1%) was a lipoma, and 1 (1%) was biliary hamartoma. There were 23 observations with probably or definitely malignant categories (LR-4, LR-5, LR-M or LR- TIV), reported in 20/329 (6%) of patients. CONCLUSION: In a cohort of at-risk patients undergoing contrast-enhanced CT/MRI for HCC screening, 60% of had no liver observations, and 6 % had probably or definitely malignant observations. IMPLICATIONS FOR PATIENT CARE: The prevalence of LI-RADS v2018 categories on CT or MR exams used for HCC screening can help develop screening criteria and assess cost-effectiveness of surveillance strategies with CT and MRI.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Prevalência , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Meios de Contraste , Sensibilidade e Especificidade
11.
Radiographics ; 43(9): e230043, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651277

RESUMO

Cirrhosis is the end stage of chronic liver disease and causes architectural distortion and perfusional anomalies. It is a major risk factor for developing hepatocellular carcinoma (HCC). Common disease entities in noncirrhotic livers, such as hemangiomas, can be rare in cirrhotic livers, and benign entities such as confluent hepatic fibrosis and focal nodular hyperplasia-like lesions may mimic the appearance of malignancies,. HCC usually has typical imaging characteristics, such as the major features established by the Liver Imaging Reporting and Data System. However, HCC can also have a spectrum of atypical or uncommon appearances, such as cystic HCC, hypovascular HCC, or macroscopic fat-containing HCC. HCCs with certain genetic mutations such as CTNNB-1-mutated HCC can harbor unique imaging features not seen in other types of HCC. In addition, malignancies that are less common than HCC, such as cholangiocarcinoma and metastases, which can be difficult to differentiate, can still occur in cirrhotic livers. Atypical imaging features of benign and malignant lesions can be challenging to accurately diagnose. Therefore, familiarity with these features and an understanding of the prevalence of disease entities in cirrhotic livers are key in the daily practice of radiologists for evaluation of cirrhotic livers. The authors illustrate the typical and atypical features of benign and malignant lesions in cirrhosis and discuss the technical pitfalls and unique advantages associated with various imaging modalities in assessing cirrhotic livers, including noncontrast and contrast-enhanced US, CT, and MRI. Work of the U.S. Government published under an exclusive license with the RSNA. Quiz questions for this article are available in the supplemental material.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Cirrose Hepática/diagnóstico por imagem , Ductos Biliares Intra-Hepáticos
12.
Metabolites ; 13(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623872

RESUMO

Non-alcoholic fatty liver disease is a multifaceted disease that progresses through multiple phases; it involves metabolic as well as structural changes. These alterations can be measured directly or indirectly through blood, non-invasive imaging, and/or tissue analyses. While some studies have evaluated the correlations between two sets of measurements (e.g., histopathology with cross-sectional imaging or blood biomarkers), the interrelationships, if any, among histopathology, clinical blood profiles, cross-sectional imaging, and metabolomics in a pediatric cohort remain unknown. We created a multiparametric clinical MRI-histopathologic NMR network map of pediatric NAFLD through multimodal correlation networks, in order to gain insight into how these different sets of measurements are related. We found that leptin and other blood markers were correlated with many other measurements; however, upon filtering out the blood biomarkers, the network was decomposed into three independent hubs centered around histopathological features, each with associated MRI and plasma metabolites. These multi-modality maps could serve as a framework for characterizing disease status and progression and could potentially guide medical interventions.

13.
Nat Rev Gastroenterol Hepatol ; 20(12): 797-809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537332

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Surveillance for HCC is critical for early detection and treatment, but fewer than one-quarter of individuals at risk of HCC undergo surveillance. Multiple failures across the screening process contribute to the underutilization of surveillance, including limited disease awareness among patients and health-care providers, knowledge gaps, and difficulty recognizing patients who are at risk. Non-alcoholic fatty liver disease and alcohol-associated liver disease are the fastest-rising causes of HCC-related death worldwide and are associated with unique barriers to surveillance. In particular, more than one-third of patients with HCC related to non-alcoholic fatty liver disease do not have cirrhosis and therefore lack a routine indication for HCC surveillance on the basis of current practice guidelines. Semi-annual abdominal ultrasound with measurement of α-fetoprotein levels is recommended for HCC surveillance, but the sensitivity of this approach for early HCC is limited, especially for patients with cirrhosis or obesity. In this Review, we discuss the current status of HCC surveillance and the remaining challenges, including the changing aetiology of liver disease. We also discuss strategies to improve the utilization and quality of surveillance for HCC.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Fatores de Risco
16.
AJR Am J Roentgenol ; 221(5): 620-631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466189

RESUMO

BACKGROUND. The confounder-corrected chemical shift-encoded MRI (CSE-MRI) sequence used to determine proton density fat fraction (PDFF) for hepatic fat quantification is not widely available. As an alternative, hepatic fat can be assessed by a two-point Dixon method to calculate signal fat fraction (FF) from conventional T1-weighted in- and opposed-phase (IOP) images, although signal FF is prone to biases, leading to inaccurate quantification. OBJECTIVE. The purpose of this study was to compare hepatic fat quantification by use of PDFF inferred from conventional T1-weighted IOP images and deep-learning convolutional neural networks (CNNs) with quantification by use of two-point Dixon signal FF with CSE-MRI PDFF as the reference standard. METHODS. This study entailed retrospective analysis of data from 292 participants (203 women, 89 men; mean age, 53.7 ± 12.0 [SD] years) enrolled at two sites from September 1, 2017, to December 18, 2019, in the Strong Heart Family Study (a prospective population-based study of American Indian communities). Participants underwent liver MRI (site A, 3 T; site B, 1.5 T) including T1-weighted IOP MRI and CSE-MRI (used to reconstruct CSE PDFF and CSE R2* maps). With CSE PDFF as reference, a CNN was trained in a random sample of 218 (75%) participants to infer voxel-by-voxel PDFF maps from T1-weighted IOP images; testing was performed in the other 74 (25%) participants. Parametric values from the entire liver were automatically extracted. Per-participant median CNN-inferred PDFF and median two-point Dixon signal FF were compared with reference median CSE-MRI PDFF by means of linear regression analysis, intraclass correlation coefficient (ICC), and Bland-Altman analysis. The code is publicly available at github.com/kang927/CNN-inference-of-PDFF-from-T1w-IOP-MR. RESULTS. In the 74 test-set participants, reference CSE PDFF ranged from 1% to 32% (mean, 11.3% ± 8.3% [SD]); reference CSE R2* ranged from 31 to 457 seconds-1 (mean, 62.4 ± 67.3 seconds-1 [SD]). Agreement metrics with reference to CSE PDFF for CNN-inferred PDFF were ICC = 0.99, bias = -0.19%, 95% limits of agreement (LoA) = (-2.80%, 2.71%) and for two-point Dixon signal FF were ICC = 0.93, bias = -1.11%, LoA = (-7.54%, 5.33%). CONCLUSION. Agreement with reference CSE PDFF was better for CNN-inferred PDFF from conventional T1-weighted IOP images than for two-point Dixon signal FF. Further investigation is needed in individuals with moderate-to-severe iron overload. CLINICAL IMPACT. Measurement of CNN-inferred PDFF from widely available T1-weighted IOP images may facilitate adoption of hepatic PDFF as a quantitative bio-marker for liver fat assessment, expanding opportunities to screen for hepatic steatosis and nonalcoholic fatty liver disease.


Assuntos
Aprendizado Profundo , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Prótons , Estudos Retrospectivos , Estudos Prospectivos , Fígado/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
17.
Aliment Pharmacol Ther ; 58(2): 229-237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269117

RESUMO

BACKGROUND: Magnetic resonance imaging-proton density fat fraction (MRI-PDFF) is an excellent biomarker for the non-invasive quantification of hepatic steatosis. AIM: To examine clinical and histologic factors associated with discordance between steatosis grade determined by histology and MRI-PDFF in patients with non-alcoholic fatty liver disease (NAFLD) METHODS: We included 728 patients with biopsy-proven NAFLD from UC San Diego (n = 414) and Yokohama City University (n = 314) who underwent MRI-PDFF and liver biopsy. Patients were stratified by steatosis, and matched with MRI-PDFF cut-points for each steatosis grade: 0 (MRI-PDFF < 6.4%), 1 (MRI-PDFF: 6.4%-17.4%), 2 (MRI-PDFF: 17.4%-22.1%), 3 (MRI-PDFF ≥ 22.1%). Primary outcome was major discordance defined as ≥2 steatosis grade difference determined by histology and MRI-PDFF. RESULTS: Mean (±SD) age and BMI were 55.3 (±13.8) years and 29.9 (±4.9) kg/m2 , respectively. The distributions of histology and MRI-PDFF-determined steatosis were 5.5% grade 0 (n = 40), 44.8% 1 (n = 326, 44.8%), 33.9% 2 (n = 247), and 15.8% 3 (n = 115) vs. 23.5% grade 0 (n = 171), 49.7% 1 (n = 362), 12.9% 2 (n = 94), and 13.9% 3 (n = 101). Major discordance rate was 6.6% (n = 48). Most cases with major discordance had greater histology-determined steatosis grade (n = 40, 88.3%), higher serum AST and liver stiffness, and greater likelihood of fibrosis ≥2, ballooning ≥1 and lobular inflammation ≥2 (all p < 0.05). CONCLUSION: Histology overestimates steatosis grade compared to MRI-PDFF. Patients with advanced NASH are likely to be upgraded on steatosis grade by histology. These data have important implications for steatosis estimation and reporting on histology in clinical practice and trials, especially in patients with stage 2 fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Prótons , Imageamento por Ressonância Magnética , Fibrose
18.
Radiology ; 307(5): e222855, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367445

RESUMO

Background Various limitations have impacted research evaluating reader agreement for Liver Imaging Reporting and Data System (LI-RADS). Purpose To assess reader agreement of LI-RADS in an international multicenter multireader setting using scrollable images. Materials and Methods This retrospective study used deidentified clinical multiphase CT and MRI and reports with at least one untreated observation from six institutions and three countries; only qualifying examinations were submitted. Examination dates were October 2017 to August 2018 at the coordinating center. One untreated observation per examination was randomly selected using observation identifiers, and its clinically assigned features were extracted from the report. The corresponding LI-RADS version 2018 category was computed as a rescored clinical read. Each examination was randomly assigned to two of 43 research readers who independently scored the observation. Agreement for an ordinal modified four-category LI-RADS scale (LR-1, definitely benign; LR-2, probably benign; LR-3, intermediate probability of malignancy; LR-4, probably hepatocellular carcinoma [HCC]; LR-5, definitely HCC; LR-M, probably malignant but not HCC specific; and LR-TIV, tumor in vein) was computed using intraclass correlation coefficients (ICCs). Agreement was also computed for dichotomized malignancy (LR-4, LR-5, LR-M, and LR-TIV), LR-5, and LR-M. Agreement was compared between research-versus-research reads and research-versus-clinical reads. Results The study population consisted of 484 patients (mean age, 62 years ± 10 [SD]; 156 women; 93 CT examinations, 391 MRI examinations). ICCs for ordinal LI-RADS, dichotomized malignancy, LR-5, and LR-M were 0.68 (95% CI: 0.61, 0.73), 0.63 (95% CI: 0.55, 0.70), 0.58 (95% CI: 0.50, 0.66), and 0.46 (95% CI: 0.31, 0.61) respectively. Research-versus-research reader agreement was higher than research-versus-clinical agreement for modified four-category LI-RADS (ICC, 0.68 vs 0.62, respectively; P = .03) and for dichotomized malignancy (ICC, 0.63 vs 0.53, respectively; P = .005), but not for LR-5 (P = .14) or LR-M (P = .94). Conclusion There was moderate agreement for LI-RADS version 2018 overall. For some comparisons, research-versus-research reader agreement was higher than research-versus-clinical reader agreement, indicating differences between the clinical and research environments that warrant further study. © RSNA, 2023 Supplemental material is available for this article. See also the editorials by Johnson and Galgano and Smith in this issue.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Pessoa de Meia-Idade , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Meios de Contraste , Sensibilidade e Especificidade
19.
Abdom Radiol (NY) ; 48(8): 2557-2569, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246973

RESUMO

PURPOSE: To assess inter-observer agreement and accuracy of LI-RADS v2018 for differentiating tumor in vein (TIV) from bland thrombus on gadoxetic acid-enhanced magnetic resonance imaging (Gx-MRI). Secondarily, to determine whether a multi-feature model improves accuracy compared to LI-RADS. METHODS: We retrospectively identified consecutive patients at risk for hepatocellular carcinoma with venous occlusion(s) reported on Gx-MRI. Five radiologists independently classified each occlusion as TIV or bland thrombus using the LI-RADS TIV criterion (enhancing soft tissue in vein). They also evaluated imaging features suggestive of TIV or bland thrombus. Intra-class correlation coefficient (ICC) was calculated for individual features. A multi-feature model was developed based on consensus scores of features with > 5% consensus prevalence and > 0.40 ICC. Sensitivity and specificity of the LI-RADS criterion and of the cross-validated multi-feature model were compared. RESULTS: Ninety-eight patients with 103 venous occlusions (58 TIV, 45 bland thrombus) were included. The LI-RADS criterion provided 0.63 ICC and, depending on the reader, 0.62-0.93 sensitivity and 0.87-1.00 specificity. Five other features had > 5% consensus prevalence and > 0.40 ICC, including three LI-RADS suggestive features and two non-LI-RADS features. The optimal multi-feature model incorporated the LI-RADS criterion and one LI-RADS suggestive feature (occluded or obscured vein contiguous with malignant parenchymal mass). After cross-validation, the multi-feature model did not improve sensitivity or specificity compared to the LI-RADS criterion (P = 0.23 and 0.25, respectively). CONCLUSION: Using Gx-MRI, the LI-RADS criterion for TIV provides substantial inter-observer agreement, variable sensitivity, and high specificity for differentiating TIV from bland thrombus. A cross-validated multi-feature model did not improve diagnostic performance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trombose , Doenças Vasculares , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Variações Dependentes do Observador , Meios de Contraste , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Trombose/diagnóstico por imagem
20.
Dig Dis ; 41(5): 757-766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231918

RESUMO

INTRODUCTION: To achieve early detection and curative treatment options, surveillance imaging for hepatocellular carcinoma (HCC) must remain of quality and without substantial limitations in liver visualization. However, the prevalence of limited liver visualization during HCC surveillance imaging has not been systematically assessed. Utilizing a systematic review and meta-analytic approach, we aimed to determine the prevalence of limited liver visualization during HCC surveillance imaging. METHODS: MEDLINE and Embase electronic databases were searched to identify published data on liver visualization limitations of HCC surveillance imaging. An analysis of proportions was pooled using a generalized linear mixed model with Clopper-Pearson intervals. Risk factors were analysed using a generalized mixed model with a logit link and inverse variance weightage. RESULTS: Of 683 records, 10 studies (7,131 patients) met inclusion criteria. Seven studies provided data on liver visualization limitations on ultrasound (US) surveillance exams: prevalence of limited liver visualization was 48.9% (95% CI: 23.5-74.9%) in the overall analysis and 59.2% (95% CI: 24.2-86.9%) in a sensitivity analysis for cirrhotic patients. Meta-regression determined that non-alcoholic fatty liver disease was associated with limited liver visualization on US. Four studies provided data for liver visualization limitations in abbreviated magnetic resonance imaging (aMRI), with inadequate visualization ranging from 5.8% to 19.0%. One study provided data for complete MRI and none for computed tomography. CONCLUSION: A substantial proportion of US exams performed for HCC surveillance provide limited liver visualization, especially in cirrhosis, which may hinder detection of small observations. Alternative surveillance strategies including aMRI may be appropriate for patients with limited US visualization.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Cirrose Hepática/complicações , Fatores de Risco , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Meios de Contraste , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...